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Abstract— Tactile sensing plays a pivotal role in human
perception and manipulation tasks, allowing us to intuitively
understand task dynamics and adapt our actions in real
time. Transferring such tactile intelligence to robotic systems
would help intelligent agents understand task constraints and
accurately interpret the dynamics of both the objects they are
interacting with and their own operations. While significant
progress has been made in imbuing robots with this tactile
intelligence, challenges persist in effectively utilizing tactile
information due to the diversity of tactile sensor form factors,
manipulation tasks, and learning objectives involved. To address
this challenge, we present a unified tactile embedding space
capable of predicting a variety of task-centric qualities over
multiple manipulation tasks. We collect tactile data from human
demonstrations across various tasks and leverage this data to
construct a shared latent space for task stage classification,
object dynamics estimation, and tactile dynamics prediction.
Through experiments and ablation studies, we demonstrate the
effectiveness of our shared tactile latent space for more accurate
and adaptable tactile networks, showing an improvement of up
to 84% over the single-task training.

I. INTRODUCTION

Humans leverage tactile sensations to extract a variety
of information while completing tasks [1]. We use this
data to perceive the tightness or friction associated with
surface interactions as well as to estimate an object’s weight
or center of mass. This information can only be directly
perceived from tactile sensing and understanding it allows us
to estimate the progress of the task, classify failure states, and
predict how much pressure needs to be applied at any given
moment [2]. Imparting this understanding of the physical
world to robotic agents could improve their effectiveness on
a variety of tasks.

With the advancements in AI and computer vision algo-
rithms, robotic agents have been able to learn visual features
from human demonstrations, allowing them to perform deli-
cate tasks via visual observations [3], [4]. However, modern
robots are mostly tactile-blind and rely on visual informa-
tion for perceiving their environments. While many object
qualities can be inferred from visual data, this perception
suffers when there is visual occlusion, which commonly
occurs during robotic manipulation tasks. Additionally, force
information can only be partially observed from visual
sensors, whereas tactile sensors can directly perceive forces
and pressures. This real-time tactile information can enable
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Fig. 1. Tactile sensing gloves (a) and target tasks setup (b-f). Tasks
are hand tightening a bolt (b), using a T-handle screwdriver (c), opening a
case (d), reorienting a wrench (e), and pouring a pitcher (f).
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Fig. 2. Mapping of tactile signal (a) and representative captured tactile
frames during different manipulation tasks (b-f). Each of the red boxes
indicates a sensing region, such as the thumb, index finger tip, middle region
of the index finger, lower region of the index finger, etc. Color correlates
to pressure in the tactile frames, with yellow indicating high pressure and
blue indicating low pressure.

intelligent systems to directly understand task constraints,
such as contact, slippage, and collision, as well as allow them
to estimate the dynamics properties of manipulated objects
and the environment, such as friction, mass, and inertia [5].

Recent efforts in sensor design [6], [7], [8] and tactile
learning [9], [10], [11], [12] have imbued robots with some
amount of tactile intelligence. Researchers have used tactile
information for object classification [13], [14], grasping
patterns discovery [15], and hand-object interaction esti-
mations [16]. Nevertheless, challenges persist in translating
insights gained from human tactile sensations to robotics
due to the wide and diverse array of tactile sensor form
factors, manipulation tasks, and learning objectives involved.
To begin to address these challenges, we aim to develop a
unified tactile latent space capable of accommodating the
diversity of manipulation tasks encountered in robotics.



In this work, we developed and evaluated the utility of
shared latent spaces and cross-task prediction to tactile learn-
ing. To test this method, we used a commercially available
sensor (Fig. 1) to collect diverse tactile data from ten people
performing five different tasks: tightening a bolt, tightening a
screw, opening a briefcase, reorienting a wrench, and pouring
from a pitcher (Fig. 2 b-f). We trained a model to encode
tactile sequences across all manipulation tasks into a shared
embedding space. We leveraged the shared embedding space
for three objectives: task stage classification, object dynamics
estimation (estimating object orientations and flow rates),
and tactile dynamics prediction (predicting future tactile
frames). Through the use of unified tactile embeddings across
manipulation tasks, we are able to identify task stages with
an average accuracy of 88.2%, estimate object orientation
with an average angular error of 6.04◦, estimate the weight
of poured rice with an average weight error of 44 g, and
predict future tactile frames with an average pressure error
of 0.262 kPa. We show that the use of this shared embedding
space improves task classification and dynamics estimation
performance through a series of experiments and ablation
studies. Furthermore, we performed additional ablation stud-
ies to determine the importance of both temporal and spatial
sensing resolution as well as the relative informativeness of
individual sensing regions. We believe these shared tactile
embeddings are the first step in transferring tactile learning
to future robot embodiments.

II. RELATED WORK
A. Tactile Sensing

Advances in materials, electronics, and manufacturing
techniques have enabled the development of a wide variety
of tactile sensors using diverse sensing mechanisms. Com-
mercial tactile sensors, such as Tekscan Grip system [17]
and BioTac [18] have been widely used to facilitate robot
manipulation with real-time tactile feedback. While these
sensors are easily mounted to robotic grippers, they are not
suitable for wearable sensors. Gelsight [19], and other vision-
based tactile sensors [20], [21], [22], embed a camera and
LEDs in transparent silicone with a reflective coating. The
3D shape and texture of the contacted surfaces are obtained
through the reflection of internal light sources. Coupled with
computational pipelines, vision-based tactile sensors have
been used to predict geometry and slip [23], object prop-
erties [24], and liquid dynamics [25] during robot manipula-
tion. These vision-based tactile sensors obtain high sensing
resolution but suffer from the limitation of bulky designs
which restricts the size, area, and complexity of surfaces to
which they can be applied. This makes them unsuitable for
capturing human demonstrations. Resistive/capacitive-based
tactile sensors utilize the change of resistance/capacitance in
materials when subjected to pressure, effectively transform-
ing pressure stimuli into electrical signals through a coupled
readout circuit. Such tactile sensors are made by align-
ing orthogonal electrode matrices over force-sensitive films.
They can be easily scaled up to large areas and conform to
complex surfaces. This has allowed resistive tactile sensing

matrix to be fabricated into wearable sensors [26], [27], smart
carpets [28], and robot manipulator coverings [26], [29] for
use in object classification, human-object interactions char-
acterization, and human-robot collaboration. In this work,
we leverage commercially available capacitive-based tactile
sensing gloves [30] to capture tactile frames from humans
as they complete several different manipulation tasks.

B. Shared Embedding Space

Computer vision has long used shared embedding spaces
and pretrained features to improve performance. Pretrained
ImageNet [31] and COCO [32] features have been used to
improve model robustness [33], and have formed the basis
of saliency estimation [34], object pose [35] and image
correspondence estimators [36], and robotic manipulation
algorithms [37]. Cross-task learning has also been used
to produce more robust features. XSkill [38] learned a
cross-embodiment, cross-skill embedding space to transfer
between human and robotic embodiment. More recently,
image foundation models [39], [40] have used extremely
large datasets and multiple training objectives to train mas-
sive models capable of producing state-of-the-art results in
multiple domains. In this work, we evaluate the efficacy of
similar cross-task training and shared embedding spaces for
tactile learning, though we still lack the amount of tactile
data required to train a tactile foundation model.

C. Human Demonstrations

Capturing large datasets of human demonstrations has
emerged as a promising approach to impart complex skills
and behaviors to robots through the observation of humans
performing similar tasks. Some notable works have explored
the use of vision as a means of transferring skills from human
demonstration to robots through virtual teleoperation [41],
[42] and motion-mirroring [3], though these demonstrations
lacked any tactile or haptic information. More recently,
researchers have started to capture tactile information from
human demonstrations. Zhang [27] collected tactile informa-
tion from simple dynamic human-object interactions, such as
waving and balancing objects. ActionSense [43] captured a
wide variety of human-centric information from people com-
pleting kitchen-based activities, including tactile data, body
pose, and eye tracking. These datasets, however, use custom
tactile sensors, making it difficult to add new activities or
sensing modalities to them. In our work, we use commercial,
off-the-shelf tactile gloves to evaluate what task information
can be predicted from human tactile data and to study the
utility of shared latent space to these predictions.

III. METHOD

To evaluate the utility of a shared tactile embedding space,
we first require a cross-task dataset to train and analyze our
methods. To this end, we designed a data collection pipeline
to capture tactile frames in conjunction with synchronized
visual imagery and object poses, both of which will be used
to produce ground truth annotation. Using this dataset, we



trained and evaluated our shared tactile embedding frame-
work on the objectives of task stage classification, object
dynamics estimation, and tactile dynamics prediction. The
data collection methodology and tactile learning module are
described in more detail below.

A. Data Collection

Five manipulation tasks (Fig. 2) were selected to gather
tactile data:

• Tightening a bolt using only hands: This task encom-
passes 4 stages - lifting the bolt, inserting it into the
screw, threading, and finally releasing the bolt after
tightening (Fig. 1b and Fig. 2b).

• Tightening a screw using a T-handle screwdriver: This
task involves 5 stages - picking up the T-handle screw-
driver, inserting it into the screw, tightening the screw,
releasing the screwdriver from the secured screw, and
placing the screwdriver down (Fig. 1c and Fig. 2c).

• Opening a case: The task is comprised of 4 stages -
unlocking the right clip, unlocking the left clip, lifting
the case lid, and releasing the lid once lifted (Fig. 1d
and Fig. 2d).

• Reorienting a wrench: This task unfolds over 6 stages
- picking up the wrench, rotating it to the left, straight-
ening it from the left orientation, rotating it to the right,
returning it to the starting right orientation, and setting
the wrench down (Fig. 1e and Fig. 2e).

• Pouring from a pitcher: The task includes 4 stages -
lifting the pitcher, tilting it, straightening the pitcher,
and placing the pitcher in its original position (Fig. 1f
and Fig. 2f).

These tasks were selected since they feature delicate task
manipulation, exemplified by tasks of tightening bolts and
screws, and incorporate intricate dynamics, as seen in tasks
like rotation and pouring. These attributes stand out as
potentially useful features in the realm of robot manipulation.

Tactile data was captured for all tasks via a commercially
available capacitive-sensing tactile glove [30]. The tactile
gloves contain 130 individual capacitive sensing elements
spread across the palm and finger, shown in Fig. 1, which
wirelessly transmit real-time pressure readings at 30 Hz
(Fig. 2). The arrangement of sensing patches allows users to
manipulate objects and perform tasks in a relatively natural
manner. Object orientation for the pitcher, wrench, and case
lid are captured via a fiducial-based motion capture system
(OptiTrack). The pouring flow rates are captured using a
digital scale (SparkFun OpenScale). These values are used
as ground truth for object dynamics estimation. Synchronized
videos were also captured using two cameras for task-stage
annotation.

For each task, participants were initially asked to perform
the task without any guidance, allowing them to become
acquainted with the intricacies of the tasks. Then, participants
were directed to execute the tasks following the predefined
sequences, as defined above, using only their dominant hand,
followed by a separate session using only their non-dominant
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Fig. 3. Model Diagram. Our model takes in a sequence of tactile
frames captured by the left and right sensing glove, and encodes them
into the shared embedding space via the tactile encoders. Individual task
classification decoders, object dynamics decoders, and tactile dynamics
decoders output the corresponding prediction respectively from this shared
embedding space.

hand for 3 - 5 rounds based on the time each participant spent
on the specific task.

Ten participants were recruited and more than 100,000
tactile frames were collected among all participants. Fig.
2 showcases representative tactile imprints featuring each
of the target tasks. Signals from each of the sensing units
were mapped to pixelized images, which were used as
input to our model. Unused portions of these tactile images
are set to zero. The recorded object orientation, pouring
rate, and visual frames were synchronized with the tactile
frame using a manual calibration procedure. We first align
characteristic frames from each sensing modality (usually a
clap in front of the camera), and then synchronize all the
sequential frames by matching their logged timestamps with
appropriate offsets. Ground truth for task stage classification
was manually annotated by referencing the synchronized
visual frames. The data was split into training, validation,
and testing sets with the ratio of 80%, 10%, and 10%,
respectively, with results reported on the test set. Each set
was generated using completed task demonstrations, ensuring
frames from individual demonstrations were not separated.

B. Model

As illustrated in Fig. 3, our model utilizes a conventional
image encoder-decoder structure, where a sequence of tactile
frames is taken as input and encoded into a shared latent
space via convolutional layers. The model outputs three
categories of parameters for each of the 5 tasks, including
classification of the task stages, estimation of object dynamic
parameters, such as object orientations and pouring flow
rate (object dynamics), and predictions for future tactile
frames (tactile dynamics). The outputs for each category of
estimates and each task are separately computed using their
own individual decoder but all share a single encoder.

Each tactile encoder consists of 5 layers of 2D convolu-
tional layers with 3 × 3 kernels and 1 × 1 paddings. The
outputs from each of the tactile encoders are flattened and
concatenated to form our shared embedding space with a
dimension of 2048. Each of the decoder branches consists
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Fig. 4. Qualitative results. (a) the confusion matrix on 23 task stages across 5 manipulation tasks. Yellow represents high confusion and blue low
confusion. (b) An example of ground truth (blue) and predicted (orange) object rotation and flow rate for object dynamics prediction. (c) The input, ground
truth, and predicted tactile frames from tactile dynamics prediction.

of 5 fully connected layers. All convolutional and fully
connected layers are followed by ReLU activation functions.

We used 40 contiguous tactile frames, n− 40 to n, from
each glove as input. This is equivalent to approximately
1.3 seconds of interaction time. For stage classification,
we identify the current task stage at the nth frame. For
object dynamics regression, we predict the relevant object
dynamic parameters for frames n − 10 to n. We find that
predicting a sequence of parameters produces significantly
more accurate results than just predicting the parameters
at the nth frame. We believe this improvement is due to
the continuity of the object motion, allowing the network
to learn more complex, multi-frame trajectories that corre-
spond to meaningful human actions. For the tactile dynamics
prediction, we predict the tactile frames from n + 20 to
n + 40. The model exhibits improved performance when it
excludes the neighboring 20 future frames (from n to n+20).
This exclusion strategy helps prevent the model from getting
trapped in local minima, where it predicts identical to the last
frame of the input tactile sequences.

For training, we use the weighted sum of three Mean
Squared Error (MSE) losses between the predicted parame-
ters from each decoder branch and the ground truth values:

L =
∑
K

wKLK , (1)

where K represents the three output categories, i.e. stage
classification, object dynamics estimation, and tactile dynam-
ics prediction, Lk, represents each output category loss, and
wK defines their corresponding weighting. We use 1, 1, and
100 for the weights of stage classification, object dynamics
estimation, and tactile dynamics prediction, respectively. The
loss, Lk for each of these output categories is defined as:

LK =
1

N

N∑
i=1

∥AK
i − ÂK

i ∥, (2)

where N denotes the number of frames, and AK
i and ÂK

i

represent the ground truth and the predicted value from each
output category, respectively. While the use of MSE loss
to train a classifier is nonstandard, we find that this loss

achieves more accurate results when compared to the more
traditional log likelihood loss for this setting. We optimize
all parameters using the Adam optimizer [44] with a learning
rate of 1e−3 and a batch size of 128.

IV. RESULT
When predicting the current stage for each task, we

achieved an average accuracy of 88.2% ± 10% for stage
classification. The full confusion matrix is demonstrated in
Fig. 4 a. We find that our model exhibits a notable tendency
to misclassify the various stages during the task of wrench
reorientation. For instance, it mistakenly classifies the stage
of straightening from the left as rotating to the right. This
behavior is likely due to the similarity in tactile sequences
between these specific stages.

For object dynamics prediction, we achieve a mean angu-
lar error of 6.04◦ ± 0.026◦ when predicting object orienta-
tion, and a weight error of 44 ± 1.2 g for pouring weight
estimation. As a reference, the pitcher, when filled with the
entire quantity of rice, weighs approximately 1.6 kg, (2.75%
absolute difference with respect to the maximum weight).
Qualitative results can be found in Fig. 4 b. Estimates of
the wrench’s rotation during reorientation yield a noticeably
significant margin of absolute difference. This can likely be
attributed to the fact that users tend to execute wrench rota-
tions with greater vigor and at greater speeds as compared
to the rotations of the pitcher and the briefcase (typically
completing a 90° rotation in under half a second). This abrupt
and substantial change in rotation angle introduces increased
complexity for the predictive model.

Finally, when predicting future tactile frames, we obtain
a mean pressure error of 0.262 ± 0.179 kPa as compared
to the ground truth pressures, with the maximum recorded
pressure of 45 kPa. Qualitative results can be found in Fig. 4
c. We believe that this tactile dynamics prediction can be
used to predict how a robot should interact with an object,
how much pressure it should exert, and where it should exert
this pressure during manipulation tasks.

A. Utility of Shared Embedding Space

To evaluate the utility of our shared latent space, we
perform an ablation study over the types of tasks and types of
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Fig. 5. Utility of shared latent space. Results on task stage classification
(higher is better), object dynamics estimation (lower is better), tactile
dynamics prediction (lower is better) from models with encoders trained
for individual output categories (orange), models with encoders trained
for individual output categories but shared over all tasks (light blue), and
models with encoders trained with the full datasets (all tasks, and all output
categories), dark blue. The generalization of shared latent space to unseen
tasks is also investigated by pre-training the shared embedding space with
4 out of the 5 tasks and refining the specific decoder branches for the left-
one-out task (red). Error bars indicate standard deviation.
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Fig. 6. Generalization to unseen participants. Results on unseen partic-
ipants using models with encoders trained for individual output categories
(orange), models with encoders trained for individual output categories but
shared over all tasks (light blue), and models with encoders shared over
all tasks and outputs (medium blue). Results from a model with encoders
shared over all tasks and outputs trained with all participants is included as
reference, (dark blue). Error bars indicate standard deviation.

learning objectives used to train the embedding space, shown
in Fig. 5. We compare our model, trained with unique en-
coders for each individual manipulation task over all output
categories (stage classification, object dynamics estimation,
and tactile dynamics prediction), shown in orange, to a model
with uses unique encoders for each output category, but
shares these encoders over all tasks, (light blue bars), and
a model whose encoder is shared over all task and all output
categories (dark blue bars). The datasets for each setting are
re-sampled to have approximately the same number of total
training examples across all settings to mitigate the effects
of purely having more data. While we find that the greatest
improvement comes from cross-task learning (light blue
bars), generating an improvement of 22.8% and 84.0% for
object dynamics estimation and tactile dynamics prediction,
respectively, as compared to the fully isolated case (orange),
we do see additional improvement of 8.9% and 6.5% for
object dynamics estimation and tactile dynamics prediction,
respectively, when also sharing the embedding space across
output categories.

We find that task stage classification demonstrates com-
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Fig. 7. Ablation study on the temporal window size of tactile input
frames. Results include task stage classification accuracy (higher is better),
the absolute difference between predicted object orientation and the ground
truth captured by the motion capture system (lower is better), and the
absolute difference between predicted future tactile frames and the ground
truth (lower is better). The average results over all tasks are reported. Error
bars indicate standard deviation.

parable performance across all models regardless of training
strategy. However, for more demanding objectives, like ob-
ject dynamics estimation and tactile prediction, the models
trained with shared tactile embeddings exhibit significant
reductions in estimation error.

Further, we tested the utility of this embedding space as
pre-trained features for unseen tasks. We first pre-trained an
encoder using data from four out of the five tasks. We then
freeze the encoder weights and train a new decoder on the
held-out task, represented by the red bars in Fig 5. The results
achieved using the pre-trained embedding for unseen tasks,
while slightly inferior to those of models trained over all
tasks, outperform a model whose encoder was trained only
on the held-out task by 8.5% and 70.3% for object dynamics
estimation and tactile dynamics prediction, respectively.

Additionally, we explored the generalization capability of
the shared tactile embedding space to unseen participants,
shown in Fig 6. Compared with predictions from seen par-
ticipants (dark blue), results on unseen participants (medium
blue) show a lower performance by an average of 20.3% for
all three output categories. However, when both are tested on
unseen participants, the model with shared embeddings still
outperforms the ones with task or output-specific encoders
(orange and light blue). This improvement underscores the
effectiveness of our proposed shared tactile embeddings in
generalizing to novel tasks and participants.

B. Ablation Studies on Tactile Data

We investigate the relative importance of our design de-
cisions using a series of ablation studies. Results over all
tasks are averaged for each reported metric. To evaluate
the sensitivity of our method to the duration of the tactile
signal, we evaluate our method while varying the temporal
window size of our input tactile sequences. As demonstrated
in Fig. 7, the input window size of 40 frames (around
1.3 seconds) obtains the overall best performance. As a
reminder, higher classification accuracy is better whereas
lower absolute difference is better for dynamics estimation
and prediction.
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regions. Left: Task stage classification accuracy (top) and object orientation
estimation error (bottom) performance drops as we reduce the tactile sensing
resolution. Right: Importance of tactile regions to task stage classification.
In general, tactile sensing from fingertips and the top palm obtains higher
importance.

To determine the importance of tactile resolution, we
train and evaluate our model while progressively reducing
the input resolution from 9 × 11 to 5 × 5, 3 × 3, and
2 × 2. As we decreased the effective sensing resolution,
we observed a corresponding decrease in stage classification
accuracy and an increase in absolute difference on object
rotation. This suggests that higher tactile sensing resolution
may be advantageous for improving performance, though the
importance of this resolution is far more pronounced when
the reduction is extreme.

To assess the importance of each individual region of the
tactile array, we pre-trained a model with the full dataset
(with full tactile images) and evaluated the stage classifica-
tion accuracy using masked tactile images as input during
testing. We zero mask portions the input tactile images,
taking into account the hand’s anatomical structures. More
specifically, we individually mask out the sensing areas
located on the distal, middle, and proximal phalanges of each
finger, as well as those on the top, lower-left, and lower-right
areas of the palms. We report normalized significance, as
one minus prediction accuracy, normalized to between zero
and one, with zero being the unmasked results. As shown in
Fig. 8, the fingertip regions emerge as the most influential
factor affecting performance. This aligns with our intuition
given that the fingertips were predominantly employed for
interacting with the object, i.e. bolts, during data capture.
Furthermore, the top palm also demonstrates its importance
compared with the lower palm, as it experiences notable
pressure during the manipulation of larger objects, such as
wrenches and pitchers.

C. Visualization of Shared Embedding Space

We visualize the shared embedding space via t-SNE [45].
As illustrated in Fig 9, it is evident that tactile frames
obtained from each of the tasks exhibit discernible clustering
patterns within the projected three-dimensional space. When
examining the features associated with an individual task
demonstration, the stages of each specific task seamlessly
trace a continuous path within this projected space. Addition-
ally, it is noted that the distinctiveness of the traces formed
by tactile sequences from different individuals effectively
encapsulates the unique behavioral characteristics of each

Fig. 9. Visualization of the shared embedding space. Features are
projected into 3D space via t-SNE. Tactile features captured from different
task manipulations form distinctive clusters. The orange, light blue, green,
yellow, and dark blue dots represent data points from the task of tightening
a bolt, tightening a screw, opening a briefcase, reorienting a wrench, and
pouring from a pitcher respectively. Tactile features captured from different
stages during the pouring task form unique traces in the projected space.
The orange, light blue, green, and yellow dots represent data points from
the stages of picking up the pitcher, pouring, straightening the pitcher, and
putting down the pitcher.

participant. Learning more about the dynamics of these traces
may better allow us to map tactile information between
participants and eventually between sensor morphologies.

V. DISCUSSION

We recognize the need for even larger datasets to further
strengthen our models. Additionally, to capture fine-grained
details in certain scenarios and further enhance our data
capture capabilities, sensors with higher resolution may be
required.

In future work, we plan to extend our shared embedding
space to cover a variety of tactile sensing modalities and hand
morphologies. In particular, we aim to map the shared tactile
embedding space from tactile sensing gloves to various
tactile sensors used by different robotic manipulators, includ-
ing parallel grippers and robotic hands, to transfer tactile
information gained from human demonstrations to robotic
agents. Furthermore, we aspire to fuse tactile information
with other sensory modalities, such as vision, audio, and
language. This multi-modal approach has the potential to
unlock new avenues for a tactile foundation model, enabling
robust perception and interaction in robotics.

VI. CONCLUSION

In this paper, we evaluated the effectiveness of a unified
tactile embedding space across diverse manipulation tasks
and output categories. To quantify the utility of this approach,
we collected a tactile dataset using 10 people performing five
unique manipulation tasks. We showed that training tactile
learning models over a variety of tasks and output categories
far outperforms models trained on only a single task. Further,
we evaluated the relative importance of spatial and temporal
resolution through a series of ablation studies. We see this
work as a stepping stone toward generalized tactile learning
and transferring tactile knowledge from human demonstra-
tions to robot actuation.
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“Cnn-based methods for object recognition with high-resolution tactile
sensors,” IEEE Sensors Journal, vol. 19, no. 16, pp. 6872–6882, 2019.

[15] S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, and W. Ma-
tusik, “Learning the signatures of the human grasp using a scalable
tactile glove,” Nature, vol. 569, no. 7758, pp. 698–702, 2019.

[16] L. Yang, B. Huang, Q. Li, Y.-Y. Tsai, W. W. Lee, C. Song, and J. Pan,
“Tacgnn: Learning tactile-based in-hand manipulation with a blind
robot using hierarchical graph neural network,” IEEE Robotics and
Automation Letters, vol. 8, no. 6, pp. 3605–3612, 2023.

[17] “Measure grip forces,” Mar 2018. [Online]. Available:
https://www.tekscan.com/measure-grip-forces

[18] J. A. Fishel and G. E. Loeb, “Sensing tactile microvibrations with
the biotac — comparison with human sensitivity,” in 2012 4th IEEE
RAS EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob), 2012, pp. 1122–1127.

[19] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[20] A. Yamaguchi and C. G. Atkeson, “Combining finger vision and
optical tactile sensing: Reducing and handling errors while cutting
vegetables,” in 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids). IEEE, 2016, pp. 1045–1051.

[21] B. Fang, F. Sun, C. Yang, H. Xue, W. Chen, C. Zhang, D. Guo, and
H. Liu, “A dual-modal vision-based tactile sensor for robotic hand
grasping,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 4740–4745.

[22] H. Sun, K. J. Kuchenbecker, and G. Martius, “A soft thumb-sized
vision-based sensor with accurate all-round force perception,” Nature
Machine Intelligence, vol. 4, no. 2, pp. 135–145, 2022.

[23] S. Dong, W. Yuan, and E. H. Adelson, “Improved gelsight tactile sen-
sor for measuring geometry and slip,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017,
pp. 137–144.

[24] W. Yuan, C. Zhu, A. Owens, M. A. Srinivasan, and E. H. Adelson,
“Shape-independent hardness estimation using deep learning and a
gelsight tactile sensor,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 951–958.

[25] H.-J. Huang, X. Guo, and W. Yuan, “Understanding dynamic
tactile sensing for liquid property estimation,” arXiv preprint
arXiv:2205.08771, 2022.

[26] Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu, M. Foshey, B. Li, T. Pala-
cios, A. Torralba, and W. Matusik, “Learning human–environment in-
teractions using conformal tactile textiles,” Nature Electronics, vol. 4,
no. 3, pp. 193–201, 2021.

[27] Q. Zhang, Y. Li, Y. Luo, W. Shou, M. Foshey, J. Yan, J. B. Tenenbaum,
W. Matusik, and A. Torralba, “Dynamic modeling of hand-object
interactions via tactile sensing,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 2874–2881.

[28] Y. Luo, Y. Li, M. Foshey, W. Shou, P. Sharma, T. Palacios, A. Tor-
ralba, and W. Matusik, “Intelligent carpet: Inferring 3d human pose
from tactile signals,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 11 255–11 265.

[29] L. Zlokapa, Y. Luo, J. Xu, M. Foshey, K. Wu, P. Agrawal, and
W. Matusik, “An integrated design pipeline for tactile sensing robotic
manipulators,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 3136–3142.

[30] [Online]. Available: https://pressureprofile.com/body-pressure-
mapping/tactile-glove

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009,
pp. 248–255.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[33] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can im-
prove model robustness and uncertainty,” in International conference
on machine learning. PMLR, 2019, pp. 2712–2721.
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